Acoustic Emissions during Structural Changes in Shape Memory Alloys

Author:

Beke Dezső,Daróczi Lajos,Tóth László,Bolgár Melinda,Samy Nora,Hudák Anikó

Abstract

Structural changes (martensitic transformation, rearrangements of martensitic variants) in shape memory alloys have an intermittent character that is accompanied by the emission of different (thermal, acoustic, and magnetic) noises, which are fingerprints of the driven criticality, resulting in a damped power-law behaviour. We will illustrate what kinds of important information can be obtained on the structural changes in shape memory alloys. It was established that the power exponents of distributions of acoustic emission (AE) parameters (energy, amplitude, etc.), belonging to martensitic transformations, show quite a universal character and depend only on the symmetry of the martensite. However, we have shown that the asymmetry of the transformation (the exponents are different for the forward and reverse transformations) results in as large differences as those due to the martensite symmetry. We will also demonstrate how the recently introduced AE clustering method can help to identify the different contributions responsible for the asymmetry. The usefulness of the investigations of time correlations between the subsequent events and correlations between acoustic and magnetic noise events in ferromagnetic shape memory alloys will be demonstrated too. Finally, examples of acoustic and magnetic emissions during variant rearrangements (superplastic or superelastic behaviour) in the martensitic state will be described.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3