Acoustic Features of the Impact of Laser Pulses on Metal-Ceramic Carbide Alloy Surface

Author:

Grigoriev Sergey N.1ORCID,Kozochkin Mikhail P.1,Porvatov Artur N.1,Ostrikov Evgeniy A.1,Mustafaev Enver S.1ORCID,Gurin Vladimir D.1,Okunkova Anna A.1ORCID

Affiliation:

1. Department of High-Efficiency Processing Technologies, Moscow State University of Technology STANKIN, Vadkovskiy per. 3A, 127994 Moscow, Russia

Abstract

Technologies associated with using concentrated energy flows are increasingly used in industry due to the need to manufacture products made of hard alloys and other difficult-to-process materials. This work is devoted to expanding knowledge about the processes accompanying the impact of laser pulses on material surfaces. The features of these processes are reflected in the acoustic emission signals, the parameters of which were used as a tool for understanding the accompanying phenomena. The influence of plasma formations above the material surface on self-oscillatory phenomena and the self-regulation process that affects pulse productivity were examined. The stability of plasma formation over time, its influence on the pulse performance, and changes in the heat flux power density were considered. Experimental data show the change in the power density transmitted by laser pulses to the surface when the focal plane is shifted. Experiments on the impact of laser pulses of different powers and durations on the surface of a hard alloy showed a relationship between the amplitude of acoustic emission and the pulse performance. This work shows the data content of acoustic emission signals and the possibility of expanding the research of concentrated energy flow technologies.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3