Oscillations of As Concentration and Electron-to-Hole Ratio in Si-Doped GaAs Nanowires

Author:

Dubrovskii Vladimir G.,Hijazi HadiORCID

Abstract

III–V nanowires grown by the vapor–liquid–solid method often show self-regulated oscillations of group V concentration in a catalyst droplet over the monolayer growth cycle. We investigate theoretically how this effect influences the electron-to-hole ratio in Si-doped GaAs nanowires. Several factors influencing the As depletion in the vapor–liquid–solid nanowire growth are considered, including the time-scale separation between the steps of island growth and refill, the “stopping effect” at very low As concentrations, and the maximum As concentration at nucleation and desorption. It is shown that the As depletion effect is stronger for slower nanowire elongation rates and faster for island growth relative to refill. Larger concentration oscillations suppress the electron-to-hole ratio and substantially enhance the tendency for the p-type Si doping of GaAs nanowires, which is a typical picture in molecular beam epitaxy. The oscillations become weaker and may finally disappear in vapor deposition techniques such as hydride vapor phase epitaxy, where the n-type Si doping of GaAs nanowires is more easily achievable.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3