Enhanced Photocatalytic Degradation of the Imidazolinone Herbicide Imazapyr upon UV/Vis Irradiation in the Presence of CaxMnOy-TiO2 Hetero-Nanostructures: Degradation Pathways and Reaction Intermediates

Author:

Bougarrani Salma,Sharma Preetam K.,Hamilton Jeremy W. J.,Singh AnukritiORCID,Canle MoisésORCID,El Azzouzi Mohammed,Byrne John AnthonyORCID

Abstract

The determination of reaction pathways and identification of products of pollutants degradation is central to photocatalytic environmental remediation. This work focuses on the photocatalytic degradation of the herbicide Imazapyr (2-(4-methyl-5-oxo-4-propan-2-yl-1H-imidazol-2-yl) pyridine-3-carboxylic acid) under UV-Vis and visible-only irradiation of aqueous suspensions of CaxMnOy-TiO2, and on the identification of the corresponding degradation pathways and reaction intermediates. CaxMnOy-TiO2 was formed by mixing CaxMnOy and TiO2 by mechanical grinding followed by annealing at 500 °C. A complete structural characterization of CaxMnOy-TiO2 was carried out. The photocatalytic activity of the hetero-nanostructures was determined using phenol and Imazapyr herbicide as model pollutants in a stirred tank reactor under UV-Vis and visible-only irradiation. Using equivalent loadings, CaxMnOy-TiO2 showed a higher rate (10.6 μM·h−1) as compared to unmodified TiO2 (7.4 μM·h−1) for Imazapyr degradation under UV-Vis irradiation. The mineralization rate was 4.07 µM·h−1 for CaxMnOy-TiO2 and 1.21 μM·h−1 for TiO2. In the CaxMnOy-TiO2 system, the concentration of intermediate products reached a maximum at 180 min of irradiation that then decreased to a half in 120 min. For unmodified TiO2, the intermediates continuously increased with irradiation time with no decrease observed in their concentration. The enhanced efficiency of the CaxMnOy-TiO2 for the complete degradation of the Imazapyr and intermediates is attributed to an increased adsorption of polar species on the surface of CaxMnOy. Based on LC-MS, photocatalytic degradation pathways for Imazapyr under UV-Vis irradiation have been proposed. Some photocatalytic degradation was obtained under visible-only irradiation for CaxMnOy-TiO2. Hydroxyl radicals were found to be main reactive oxygen species responsible for the photocatalytic degradation through radical scavenger investigations.

Funder

British Council

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3