Author:
Bougarrani Salma,Baicha Zakarya,Latrach Lahbib,Mahi Mohammed El,Hernandez Fernandez Francisco José
Abstract
The degradation of imazapyr (C13H15N3O3), an active element in the aqueous solution of commercial herbicide, was investigated. This study was the first to evaluate in a comprehensive manner the efficiency of advanced oxidation processes for imazapyr degradation. Results showed that Imazapyr degradation is significantly affected by operational conditions such as TiO2 concentration, ozone concentration, initial concentration of imazapyr and pH. The kinetics of Imazapyr consumption was the first order with respect to Imazapyr concentration and zero order with respect to ozone concentration with a constant rate of 0.247 min−1 and 0.128 min−1 for photocatalytic ozonation and heterogeneous photocatalysis, while it was the first order with respect to Imazapyr and the first order with respect to ozone concentrations when only ozone was used with a constant rate of 0.053 mol L−1 min−1 at pH 7. The results revealed that more than 90 percent of the removal efficiency representing the elimination of imazapyr was held up to 7 μM. Further increase in the concentration of imazapyr leads to a drop in the removal efficiency, however the total imazapyr degradation was reached in 20 min utilizing photocatalytic ozonation for 5 μM of Imazapyr in the presence of 100 mg L−1 of TiO2, 10 mg L−1 of ozone at pH 7. Photocatalytic ozonation and heterogeneous photocatalysis utilizing TiO2 as a semiconductor process appeared possible and well suited for the treatment of organic contaminants such as imazapyr herbicides, although at certain dosages of pH and common time for wastewater treatment, imazapyr was not degraded with ozonation on its own. The association of two oxidation processes, ozonation and photocatalysis, has improved oxidation efficiencies for water treatment under optimal conditions, leading to the development of non-selective hydroxyl and more reactive radicals in the oxidation medium, as well as the resulting synergistic effects between photocatalysis and ozonation that react more rapidly with imazapyr herbicide.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献