Simple Fabrication of Transparent, Colorless, and Self-Disinfecting Polyethylene Terephthalate Film via Cold Plasma Treatment

Author:

Kim Ji-HyeonORCID,Mun ChaeWon,Ma Junfei,Park Sung-GyuORCID,Lee Seunghun,Kim Chang Su

Abstract

Cross-infection following cross-contamination is a serious social issue worldwide. Pathogens are normally spread by contact with germ-contaminated surfaces. Accordingly, antibacterial surface technologies are urgently needed and have consequently been actively developed in recent years. Among these technologies, biomimetic nanopatterned surfaces that physically kill adhering bacteria have attracted attraction as an effective technological solution to replace toxic chemical disinfectants (biocides). Herein, we introduce a transparent, colorless, and self-disinfecting polyethylene terephthalate (PET) film that mimics the surface structure of the Progomphus obscurus (sanddragon) wing physically killing the attached bacteria. The PET film was partially etched via a 4-min carbon tetrafluoride (CF4) plasma treatment. Compared to a flat bare PET film, the plasma-treated film surface exhibited a uniform array structure composed of nanopillars with a 30 nm diameter, 237 nm height, and 75 nm pitch. The plasma-treated PET film showed improvements in optical properties (transmittance and B*) and antibacterial effectiveness over the bare film; the transparency and colorlessness slightly increased, and the antibacterial activity increased from 53.8 to 100% for Staphylococcus aureus, and from 0 to 100% for Escherichia coli. These results demonstrated the feasibility of the CF4 plasma-treated PET film as a potential antibacterial overcoating with good optical properties.

Funder

Korea Institute of Materials Science

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference58 articles.

1. Handbook on Pet Film and Sheets, Urethane Foams, Flexible Foams, Rigid Foams, Speciality Plastics, Stretch Blow Moulding, Injection Blow Moulding, Injection and Co-Injection Preform Technologie,2018

2. Bacterial contamination of computer keyboards and mice, elevator buttons and shopping carts;Al-Ghamdi;African J. Microbiol. Res.,2011

3. Hospital Hygiene and Infection Control,2014

4. Antibacterial Coatings: Challenges, Perspectives, and Opportunities

5. Systems developed for application as self-cleaning surfaces and/or antimicrobial properties: a short review on materials and production methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3