Towards the Enhancement in Photocatalytic Performance of Ag3PO4 Nanoparticles through Sulfate Doping and Anchoring on Electrospun Nanofibers

Author:

Panthi Gopal,Gyawali Kapil Raj,Park Mira

Abstract

Present work reports the enhancement in photocatalytic performance of Ag3PO4 nanoparticles through sulfate doping and anchoring on Polyacrylonitrile (PAN)-electrospun nanofibers (SO42−-Ag3PO4/PAN-electrospun nanofibers) via electrospinning followed by ion-exchange reaction. Morphology, structure, chemical composition, and optical properties of the prepared sample were characterized using XRD, FESEM, FTIR, XPS, and DRS. The anchoring of SO42−-Ag3PO4 nanoparticles on the surface of PAN-electrospun nanofibers was evidenced by the change in color of the PAN nanofibers mat from white to yellow after ion-exchange reaction. FESEM analysis revealed the existence of numerous SO42−-Ag3PO4 nanoparticles on the surface of PAN nanofibers. Photocatalytic activity and stability of the prepared sample was tested for the degradation of Methylene blue (MB) and Rhodamine B (RhB) dyes under visible light irradiation for three continuous cycles. Experimental results showed enhanced photodegradation activity of SO42−-Ag3PO4/PAN-electrospun nanofibers compared to that of sulfate undoped sample (Ag3PO4/PAN-electrospun nanofibers). Doping of SO42− into Ag3PO4 crystal lattice could increase the photogenerated electron–hole separation capability, and PAN nanofibers served as support for nanoparticles to prevent from agglomeration.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3