PdS-ZnS-Doped Electrospun Polymer Nanofibers as Effective Photocatalyst for Hydrogen Evolution

Author:

Panthi Gopal1,Gyawali Arun1

Affiliation:

1. School of Geomatics, Mid Baneshwor, P.O. Box 13177, Kathmandu 44618, Nepal

Abstract

Poly(vinyl acetate) nanofibers doped with PdS-ZnS nanoparticles (PdS-ZnS/PVAc nanofibers) were fabricated via an electrospinning technique. PdS-ZnS nanoparticles were in situ synthesized by adding (NH4)2S solution to poly(vinyl acetate)/zinc acetate/palladium acetate solution. Electrospinning of the formed colloidal solution led to the formation of poly(vinyl acetate) nanofibers containing uniformly distributed PdS-ZnS nanoparticles. The prepared samples were characterized by field emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy. In photocatalytic activity investigation, the PdS-ZnS/PVAc nanofibers showed remarkably enhanced performance towards water photosplitting under solar irradiation compared to the ZnS/PVAc nanofibers. This enhanced performance is attributed to the synergistic effects of heterostructured PdS-ZnS nanoparticles, which can improve photogenerated charge migration and solar light absorption.

Funder

School of Geomatics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3