Abstract
We present the photo-induced force microscopy (PiFM) studies of various nano-materials by implementing a quartz tuning fork (QTF), a self-sensing sensor that does not require complex optics to detect the motion of a force probe and thus helps to compactly configure the nanoscale optical mapping tool. The bimodal atomic force microscopy technique combined with a sideband coupling scheme is exploited for the high-sensitivity imaging of the QTF-PiFM. We measured the photo-induced force images of nano-clusters of Silicon 2,3-naphthalocyanine bis dye and thin graphene film and found that the QTF-PiFM is capable of high-spatial-resolution nano-optical imaging with a good signal-to-noise ratio. Applying the QTF-PiFM to various experimental conditions will open new opportunities for the spectroscopic visualization and substructure characterization of a vast variety of nano-materials from semiconducting devices to polymer thin films to sensitive measurements of single molecules.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献