Research on Reservoir Optimal Operation Based on Long-Term and Mid-Long-Term Nested Models

Author:

Mo Chongxun,Zhao Shutan,Ruan YuliORCID,Liu Siyi,Lei XingbiORCID,Lai Shufeng,Sun Guikai,Xing ZhenxiangORCID

Abstract

In order to solve the problem that the existing optimal operation model of reservoirs cannot coordinate the contradiction between long-term and short-term benefits, the paper nested the long-term optimal operation and mid-long-term optimal operations of reservoirs and established the multi-objective optimal operation nested model of reservoirs. At the same time, based on this model, the optimal control mode is determined when there are errors in the predicted runoff. In the optimal scheduling nested model, the dynamic programming algorithm is used to determine the long-term optimal scheduling solution, and the genetic algorithm is used to solve the mid-long-term optimal scheduling. The optimal control mode is determined by three indicators: power generation benefit, water level over limit risk rate and the not-exploited water volume. The results show that, on the premise of meeting the flood control objectives, the nested model optimal dispatching plan has higher benefits than the long-term optimal dispatching plan and the actual dispatching plan, which verifies the superiority of the nested model in the reservoir optimal dispatching problem. When there is error in predicting runoff, among the water level control mode, flow control mode and output control mode, the average power generation benefit of output control mode is 150.05 GW·h, the low-risk rate of water level overrun is 0.29, and the not-exploited water volume is 39,270 m3. Compared with the water level control mode and the flow control mode, the output control mode has the advantages of higher power generation efficiency, lower water level over limit risk rate and less not-exploited water volume. Therefore, from the perspective of economic benefit and risk balance, the output control mode in the optimization scheduling nested mode is the optimal control mode.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Guangxi Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3