Tolerance to Drought, Low pH and Al Combined Stress in Tibetan Wild Barley Is Associated with Improvement of ATPase and Modulation of Antioxidant Defense System

Author:

Ahmed Imrul,Nadira Umme,Qiu Cheng-Wei,Cao Fangbin,Zhang Guoping,Holford Paul,Wu Feibo

Abstract

Aluminum (Al) toxicity and drought are two major constraints on plant growth in acidic soils, negatively affecting crop performance and yield. Genotypic differences in the effects of Al/low pH and polyethyleneglycol (PEG) induced drought stress, applied either individually or in combination, were studied in Tibetan wild (XZ5, drought-tolerant; XZ29, Al-tolerant) and cultivated barley (Al-tolerant Dayton; drought-tolerant Tadmor). Tibetan wild barley XZ5 and XZ29 had significantly higher H+-ATPase, Ca2+Mg2+-ATPase, and Na+K+-ATPase activities at pH 4.0+Al+PEG than Dayton and Tadmor. Moreover, XZ5 and XZ29 possessed increased levels in reduced ascorbate and glutathione under these conditions, and antioxidant enzyme activities were largely stimulated by exposure to pH 4.0+PEG, pH 4.0+Al, and pH 4.0+Al+PEG, compared to a control and to Dayton and Tadmor. The activity of methylglyoxal (MG) was negatively correlated with increased levels of glyoxalase (Gly) I and Gly II in wild barley. Microscopic imaging of each genotype revealed DNA damage and obvious ultrastructural alterations in leaf cells treated with drought or Al alone, and combined pH 4.0+Al+PEG stress; however, XZ29 and XZ5 were less affected than Dayton and Tadmor. Collectively, the authors findings indicated that the higher tolerance of the wild barley to combined pH 4.0+Al+PEG stress is associated with improved ATPase activities, increased glyoxalase activities, reduced MG, and lower reactive oxygen species levels (like O2− and H2O2) due to increased antioxidant enzyme activities. These results offer a broad comprehension of the mechanisms implicated in barley’s tolerance to the combined stress of Al/low pH and drought, and may provide novel insights into the potential utilization of genetic resources, thereby facilitating the development of barley varieties tolerant to drought and Al/low pH stress.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3