Transcriptome Profiles Reveal the Crucial Roles of Auxin and Cytokinin in the “Shoot Branching” of Cremastra appendiculata

Author:

Lv Xiang,Zhang Mingsheng,Li XiaolanORCID,Ye Ruihua,Wang Xiaohong

Abstract

Cremastra appendiculata has become endangered due to reproductive difficulties. Specifically, vegetative reproduction is almost its only way to reproduce, and, under natural conditions, it cannot grow branches, resulting in an extremely low reproductive coefficient (reproductive percentage). Here, we performed RNA-Seq and a differentially expressed gene (DEG) analysis of the three stages of lateral bud development in C. appendiculata after decapitation—dormancy (D2), transition (TD2), and emergence (TG2)—and the annual axillary bud natural break (G1) to gain insight into the molecular regulatory network of shoot branching in this plant. Additionally, we applied the auxin transport inhibitors N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodibenzoic acid (TIBA) to a treated pseudobulb string of C. appendiculata to verify the conclusions obtained by the transcriptome. RNA-Seq provided a wealth of valuable information. Successive pairwise comparative transcriptome analyses revealed 5988 genes as DEGs. GO (Gene Ontology) and KEGG (Kyoto encyclopedia of genes and genomes) analyses of DEGs showed significant enrichments in phytohormone biosynthesis and metabolism, regulation of hormone levels, and a hormone-mediated signaling pathway. qRT-PCR validation showed a highly significant correlation (p < 0.01) with the RNA-Seq generated data. High-performance liquid chromatography (HPLC) and qRT-PCR results showed that, after decapitation, the NPA- and TIBA-induced lateral buds germinated due to rapidly decreasing auxin levels, caused by upregulation of the dioxygenase for auxin oxidation gene (DAO). Decreased auxin levels promoted the expression of isopentenyl transferase (IPT) and cytochrome P450 monooxygenase, family 735, subfamily A (CYP735A) genes and inhibited two carotenoid cleavage dioxygenases (CCD7 and CCD8). Zeatin levels significantly increased after the treatments. The increased cytokinin levels promoted the expression of WUSCHEL (WUS) and inhibited expression of BRANCHED1 (BRC1) in the cytokinin signal transduction pathway and initiated lateral bud outgrowth. Our data suggest that our theories concerning the regulation of shoot branching and apical dominance is really similar to those observed in annual plants. Auxin inhibits bud outgrowth and tends to inhibit cytokinin levels. The pseudobulb in the plant behaves in a similar manner to that of a shoot above the ground.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3