Auxin regulates bulbil initiation by mediating sucrose metabolism in Lilium lancifolium

Author:

Xin Yin12,Chen Xi13,Liang Jiahui1,Wang Shaokun2,Pan Wenqiang2,Wu Jingxiang12,Zhang Mingfang1,Zaccai Michele4,Yu Xiaonan3ORCID,Zhang Xiuhai1,Wu Jian2ORCID,Du Yunpeng1ORCID

Affiliation:

1. Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2. China Agricultural University Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, , Beijing 100193, China

3. Beijing Forestry University College of Landscape Architecture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, , Beijing 100083, China

4. Gurion University of the Negev Department of Life Sciences, Ben- , Beer Sheva 8410501, Israel

Abstract

Abstract Lily bulbils, which serve as advantageous axillary organs for vegetative propagation, have not been extensively studied in terms of the mechanism of bulbil initiation. The functions of auxin and sucrose metabolism have been implicated in axillary organ development, but their relationship in regulating bulbil initiation remains unclear. In this study, exogenous indole-3-acetic acid (IAA) treatment increased the endogenous auxin levels at leaf axils and significantly decreased bulbil number, whereas treatment with the auxin polar transport inhibitor N-1-naphthylphthalamic acid (NPA), which resulted in a low auxin concentration at leaf axils, stimulated bulbil initiation and increased bulbil number. A low level of auxin caused by NPA spraying or silencing of auxin biosynthesis genes YUCCA FLAVIN MONOOXYGENASE-LIKE 6 (LlYUC6) and TRYPTOPHAN AMINOTRANSFERASERELATED 1 (LlTAR1) facilitated sucrose metabolism by activating the expression of SUCROSE SYNTHASES 1 (LlSusy1) and CELL WALL INVERTASE 2 (LlCWIN2), resulting in enhanced bulbil initiation. Silencing LlSusy1 or LlCWIN2 hindered bulbil initiation. Moreover, the transcription factor BASIC HELIX-LOOP-HELIX 35 (LlbHLH35) directly bound the promoter of LlSusy1, but not the promoter of LlCWIN2, and activated its transcription in response to the auxin content, bridging the gap between auxin and sucrose metabolism. In conclusion, our results reveal that an LlbHLH35-LlSusy1 module mediates auxin-regulated sucrose metabolism during bulbil initiation.

Funder

Postdoctoral Science Foundation of China

Strategic Development Department of China Association for Science and Technology, 111 Project of the Ministry of Education

Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects

Excellent Youth Science Foundation of Beijing Academy of Agriculture and Forestry Sciences

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3