Simulation Analysis of Power Consumption and Mixing Time of Pseudoplastic Non-Newtonian Fluids with a Propeller Agitator

Author:

Wang Shiji,Wang Peng,Yuan Jianping,Liu Jinfeng,Si QiaoruiORCID,Li Dun

Abstract

In order to study the effect of a high twist rate propeller on the flow field characteristics of pseudoplastic non-Newtonian fluids, the numerical simulation method was used to analyze the mixing flow field of pseudoplastic non-Newtonian fluids at different concentrations in this paper. By changing the rotational speed and the blade installation height, the vorticity, turbulent energy, mixing power consumption, mixing time and mixing energy of the flow field were analyzed. By analyzing and comparing the research results, it was found that increasing the mixing propeller speed can effectively improve the mixing effect. Single-layer arrangement of mixing propeller is not suitable to be placed close to the bottom of the tank, and the mixing of the upper flow field is weaker. Under the same conditions, when the viscosity of pseudoplastic non-Newtonian fluid is increased, the high vorticity and high turbulence energy area is reduced to the mixing propeller area, and the time required for mixing 1.25% CMC solution is 246 times longer than that for mixing 0.62% CMC solution and the required mixing energy also increases sharply. The accuracy of the numerical simulation was verified by experiments. Considering the mixing effect and the mixing power consumption, the single-layer arrangement propeller is more suitable for mixing pseudoplastic non-Newtonian fluids with mass fraction of 0.62% CMC or below. This study can provide a reference for the practical application of propeller mixers to mix pseudoplastic non-Newtonian fluids.

Funder

Peng Wang

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3