Influence of rheological parameters on the performance of the aerated coaxial mixer containing a pseudoplastic fluid

Author:

Rahimzadeh Ali1ORCID,Ein-Mozaffari Farhad1ORCID,Lohi Ali1ORCID

Affiliation:

1. Department of Chemical Engineering, Toronto Metropolitan University , 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada

Abstract

Gas dispersion in non-Newtonian fluids has numerous applications in many chemical and biochemical applications. However, the effect of the power-law model constants describing the rheological behavior of the pseudoplastic fluid has never been investigated. Thus, a numerical model was developed to simulate the hydrodynamics of gas dispersion in non-Newtonian fluids with a coaxial mixer. Then, a set of experiments was conducted to assess the mass transfer efficacy of a coaxial mixer to benchmark the numerical model. In this regard, various methods, including dynamic gassing-in and electrical resistance tomography methods, were used to quantify the mass transfer and gas hold-up profiles. The influence of fluid rheological properties, gas flow number, and rotating mode on the power consumption, mass transfer coefficient, bubble size profile, and hydrodynamics were examined both experimentally and numerically. The response surface model (RSM) was employed to explore the individual effects of power-law model constants on mass transfer. The RSM model utilized five levels for the consistency index (k), five levels for the flow index (n), and three levels for the gas flow number. The statistical model proposed that the absolute model constants for the flow and consistency indices were 0.0012 and 0.0010, respectively, for the co-rotating mixer. Conversely, for the counter-rotating mixer, these constants were 0.0010 and 0.0013, respectively. Therefore, this study revealed that the co-rotating coaxial mixer was well-suited for dispersing gas within a fluid with high consistency. In contrast, the counter-rotating mixer proved effective in enhancing gas dispersion within a fluid with a lower flow index.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3