Methods for Enhancing the Electrical Properties of Epoxy Matrix Composites

Author:

Krajewski DariuszORCID,Oleksy Mariusz,Oliwa RafałORCID,Bulanda KatarzynaORCID,Czech KamilORCID,Mazur DamianORCID,Masłowski GrzegorzORCID

Abstract

This paper presents ways to modify epoxy resin matrix composites to increase their electrical conductivity. Good electrical properties are particularly important for materials used in the construction of vehicles (cars, trains, airplanes) and other objects exposed to lightning (e.g., wind turbines). When the hull plating is made of an electrical conductor (e.g., metal alloys) it acts as a Faraday cage and upon lightning discharge the electrical charge does not cause damage to the structure. Epoxy-resin-based composites have recently been frequently used to reduce the weight of structures, but due to the insulating properties of the resin, various modifications must be applied to improve the conductivity of the composite. The methods to improve the conductivity have been categorized into three groups: modification of the matrix with conductive fillers, modification of the composite reinforcement, and addition of layers with increased electrical conductivity to the composite.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference111 articles.

1. The interaction of lightning with airborne vehicles

2. Triggeredlightning risk assessment for reusable launch vehicles at the southwest regional and Oklahoma spaceports;Willett;Proceedings of the 86th AMS Annual Meeting,2006

3. Lightning strike protection for composite structures;Gardiner;High Perform. Compos.,2006

4. Fracture behavior of cfrp specimen after lightning test;Hirano;Proceedings of the 17th International Conference on Composite Materials,2009

5. Lightning Electromagnetic Field Coupling to Overhead Lines: Theory, Numerical Simulations, and Experimental Validation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3