Waste Iron Filings to Improve the Mechanical and Electrical Properties of Glass Fiber-Reinforced Epoxy (GFRE) Composites

Author:

Abushammala Hatem1ORCID,Mao Jia2ORCID

Affiliation:

1. Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates

2. Department of Mechanical Engineering, Al Ghurair University, International Academic City, Dubai P.O. Box 37374, United Arab Emirates

Abstract

Several studies have been conducted to improve the mechanical and other value-added properties of glass fiber-reinforced epoxy (GFRE) composites by the addition of different fillers. In this work, waste iron filings (WIFs) obtained from the steel industry were incorporated into GFRE composite samples in varying amounts of up to 50% (%w) to improve their mechanical and electrical properties. The results showed that, with increasing WIF loading from 0 w% to 50 w%, the resultant composite density gradually increased from 1.4 to 2.1 g/cm3. Surface hardness, Young’s modulus, and tensile strength also increased significantly with the addition of up to 9 w% of WIF followed by a significant drop with more WIF addition due to agglomeration. Overall, Young’s modulus of the GFRE samples with any WIF content was higher than that of the GFRE composite with no WIF. The elongation at break results showed that the GFRE samples were less ductile upon WIF addition, which decreased from 2% to 0.6% upon loading the composite with 50% WIF. In terms of electrical conductivity, the GFRE samples with WIF content of 15% or more were electrically conductive and their electrical conductivity increased with WIF content. It was clear that more WIF was needed to establish a percolated network in the GFRE composites to render them conductive. The electrical conductivity of the GFRE samples containing 15% WIFs was around 2.9 kS/m and increased to 35 kS/m upon the addition of 50% WIFs. These novel electrically conductive GFRE composites could be promising for structural dynamic monitoring systems in the construction industry. They also support the efforts for the utilization of waste materials towards a circular economy.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3