Dynamic Accumulation of the Quaternary Shale Biogas in Sanhu Area of the Qaidam Basin, China

Author:

Shao Zeyu,He Shijie,Hou Lili,Wang Yuchao,Tian Cong,Liu Xiaoxue,Zhou Yuru,Hao Mianzhu,Lin Caihua

Abstract

Biogas resources in the Sanhu area of the Qaidam Basin have great potential, but there are few studies on biogas from shale, especially on the accumulation conditions of shale biogas. The study of biogas accumulation conditions of quaternary shale in the Sanhu area is of great significance to the theory of biogas accumulation and the guidance of exploration and development. This paper takes Quaternary shale in the Sanhu area as the research object. It is analyzed from multiple perspectives of shale hydrocarbon generation conditions, reservoir conditions, as well as hydrodynamic and structural conditions. Through the experiments of soluble organic carbon analysis and porosity and permeability analysis, the accumulation conditions of shale biogas reservoirs are clarified. The results show that the quaternary shale has a high soluble organic carbon content and high salinity formation water, which is conducive to late methane biochemical generation. Quaternary shale has the characteristics of high porosity and low permeability, mainly developing intergranular pores and intragranular pores. The large pore volume and specific surface area provide a lot of storage space for free gas and adsorbed gas, and the reservoir conditions are good. Under the structural characteristics of high in the south and low in the north and the action of formation hydrodynamics, biogas migrated from the south and deep to the north of the basin. The north slope is the main biogas-rich zone. On the whole, the quaternary shale in the Sanhu area has the characteristics of continuous hydrocarbon generation and dynamic accumulation, which has huge resource potential and exploration and development value.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3