Flower Greenhouse Energy Management to Offer Local Flexibility Markets

Author:

Roncancio Juan SebastianORCID,Vuelvas JoséORCID,Patino DiegoORCID,Correa-Flórez Carlos AdriánORCID

Abstract

Electricity access is strongly linked to human growth. Despite this, a portion of the world’s population remains without access to energy. In Colombia, rural communities have energy challenges due to the National Interconnected System’s (NIS) lack of quality and stability. It is common to find that energy services in such locations are twice as costly as in cities and are only accessible for a few hours every day due to grid overload. Implementing market mechanisms that enable handling imbalances through the flexible load management of main loads within the grid is vital for improving the rural power grid’s quality. In this research, the energy from the rural grid is primarily employed to power a heating, ventilation, and air-conditioning (HVAC) system that chills flowers for future commerce. This load has significant consumption within the rural grid, so handling HVAC consumption in a suitable form can support the grid to avoid imbalances and improve the end-user access to energy. The primary responsibilities of the flower greenhouse operator are to reduce energy costs, maximize flexibility, and maintain a proper indoor temperature. Accordingly, this research proposes a flexible energy market based on the bi-level mixed-integer linear programming problem (Bi-MILP), involving the Agricultural Demand Response Aggregator (ADRA) and the flower greenhouse. ADRA is responsible for assuring the grid’s stability and quality and developing pricing plans that promote flexibility. A flower greenhouse in Colombia’s Boyacá department is used as an application for this research. This study looked at the HVAC’s flexibility under three different pricing schemes (fixed, time-of-use, and hourly) and graded the flower greenhouse’s flexibility as a reliable system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3