Emerging Information Technologies for the Energy Management of Onboard Microgrids in Transportation Applications

Author:

Huang Zhen1ORCID,Xiao Xuechun1,Gao Yuan2ORCID,Xia Yonghong1,Dragičević Tomislav3,Wheeler Pat4ORCID

Affiliation:

1. School of Information Engineering, Nanchang University, Nanchang 330031, China

2. School of Engineering, University of Leicester, Leicester LE1 7RH, UK

3. Department of Electrical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark

4. Power Electronics, Machines and Control (PEMC), University of Nottingham, Nottingham NG7 2RD, UK

Abstract

The global objective of achieving net-zero emissions drives a significant electrified trend by replacing fuel-mechanical systems with onboard microgrid (OBMG) systems for transportation applications. Energy management strategies (EMS) for OBMG systems require complicated optimization algorithms and high computation capabilities, while traditional control techniques may not meet these requirements. Driven by the ability to achieve intelligent decision-making by exploring data, artificial intelligence (AI) and digital twins (DT) have gained much interest within the transportation sector. Currently, research on EMS for OBMGs primarily focuses on AI technology, while overlooking the DT. This article provides a comprehensive overview of both information technology, particularly elucidating the role of DT technology. The evaluation and analysis of those emerging information technologies are explicitly summarized. Moreover, this article explores potential challenges in the implementation of AI and DT technologies and subsequently offers insights into future trends.

Funder

Jiangxi Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3