Flood Detection Using Real-Time Image Segmentation from Unmanned Aerial Vehicles on Edge-Computing Platform

Author:

Hernández DanielORCID,Cecilia José M.ORCID,Cano Juan-CarlosORCID,Calafate Carlos T.ORCID

Abstract

With the proliferation of unmanned aerial vehicles (UAVs) in different contexts and application areas, efforts are being made to endow these devices with enough intelligence so as to allow them to perform complex tasks with full autonomy. In particular, covering scenarios such as disaster areas may become particularly difficult due to infrastructure shortage in some areas, often impeding a cloud-based analysis of the data in near-real time. Enabling AI techniques at the edge is therefore fundamental so that UAVs themselves can both capture and process information to gain an understanding of their context, and determine the appropriate course of action in an independent manner. Towards this goal, in this paper, we take determined steps towards UAV autonomy in a disaster scenario such as a flood. In particular, we use a dataset of UAV images relative to different floods taking place in Spain, and then use an AI-based approach that relies on three widely used deep neural networks (DNNs) for semantic segmentation of images, to automatically determine the regions more affected by rains (flooded areas). The targeted algorithms are optimized for GPU-based edge computing platforms, so that the classification can be carried out on the UAVs themselves, and only the algorithm output is uploaded to the cloud for real-time tracking of the flooded areas. This way, we are able to reduce dependency on infrastructure, and to reduce network resource consumption, making the overall process greener and more robust to connection disruptions. Experimental results using different types of hardware and different architectures show that it is feasible to perform advanced real-time processing of UAV images using sophisticated DNN-based solutions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3