Using Airborne LiDAR to Map Red Alder in the Sappho Long-Term Ecosystem Productivity Study

Author:

Kruper Ally,McGaughey Robert J.,Crumrine Sarah,Bormann Bernard T.,Bennett Keven,Bobsin Courtney R.

Abstract

A fundamental question of forestry is that of species composition: which species are present, and which are not. However, traditional forest measurements needed to map species over large areas can be both time consuming and costly. In this study, we combined airborne light detection and ranging (LiDAR) data with extensive field data from the Long-Term Ecosystem Productivity study located near Sappho, Washington, USA to increase the accuracy of our GIS data and to differentiate between red alder (Alnus rubra Bong.) and other dominant tree species. We adjusted plot and tree locations using LiDAR canopy height models (CHMs) by manually matching tree canopies on the CHMs with tree stem maps based on field data. We then used the adjusted tree locations and metrics computed from LiDAR point cloud data to create a classification model to identify and map red alder. The manual matching of field stem maps to CHMs improved tree locations, allowing us to create model training data. These data were used to create a random forest model that discriminated between red alder and conifer species with an accuracy of 96%. Our findings highlight the potential of LiDAR to improve coordinates of individual trees as well as discriminate between selected coniferous and deciduous tree species using LiDAR data collected in leaf-off conditions in Pacific Northwest ecosystems.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Predicting Forest Stand Characteristics with Airborne Scanning LiDAR;Means;Photogramm. Eng. Remote Sens.,2000

2. LiDAR Utility for Natural Resource Managers

3. Estimating timber volume of forest stands using airborne laser scanner data

4. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach

5. A Model Development and Application Guide for Generating an Enhanced Forest Inventory Using Airborne Laser Scanning Data and an Area-Based Approach;White,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3