Feasibility of Bi-Temporal Airborne Laser Scanning Data in Detecting Species-Specific Individual Tree Crown Growth of Boreal Forests

Author:

Poorazimy MaryamORCID,Ronoud GhasemORCID,Yu XiaoweiORCID,Luoma VilleORCID,Hyyppä Juha,Saarinen NinniORCID,Kankare Ville,Vastaranta MikkoORCID

Abstract

The tree crown, with its functionality of assimilation, respiration, and transpiration, is a key forest ecosystem structure, resulting in high demand for characterizing tree crown structure and growth on a spatiotemporal scale. Airborne laser scanning (ALS) was found to be useful in measuring the structural properties associated with individual tree crowns. However, established ALS-assisted monitoring frameworks are still limited. The main objective of this study was to investigate the feasibility of detecting species-specific individual tree crown growth by means of airborne laser scanning (ALS) measurements in 2009 (T1) and 2014 (T2). Our study was conducted in southern Finland over 91 sample plots with a size of 32 × 32 m. The ALS crown metrics of width (WD), projection area (A2D), volume (V), and surface area (A3D) were derived for species-specific individually matched trees in T1 and T2. The Scots pine (Pinus sylvestris), Norway spruce (Picea abies (L.) H. Karst), and birch (Betula sp.) were the three species groups that studied. We found a high capability of bi-temporal ALS measurements in the detection of species-specific crown growth (Δ), especially for the 3D crown metrics of V and A3D, with Cohen’s D values of 1.09–1.46 (p-value < 0.0001). Scots pine was observed to have the highest relative crown growth (rΔ) and showed statistically significant differences with Norway spruce and birch in terms of rΔWD, rΔA2D, rΔV, and rΔA3D at a 95% confidence interval. Meanwhile, birch and Norway spruce had no statistically significant differences in rΔWD, rΔV, and rΔA3D (p-value < 0.0001). However, the amount of rΔ variability that could be explained by the species was only 2–5%. This revealed the complex nature of growth controlled by many biotic and abiotic factors other than species. Our results address the great potential of ALS data in crown growth detection that can be used for growth studies at large scales.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3