A Two-Branch Convolutional Neural Network Based on Multi-Spectral Entropy Rate Superpixel Segmentation for Hyperspectral Image Classification

Author:

Mu Caihong,Dong ZhidongORCID,Liu YiORCID

Abstract

Convolutional neural networks (CNNs) can extract advanced features of joint spectral–spatial information, which are useful for hyperspectral image (HSI) classification. However, the patch-based neighborhoods of samples with fixed sizes are usually used as the input of the CNNs, which cannot dig out the homogeneousness between the pixels within and outside of the patch. In addition, the spatial features are quite different in different spectral bands, which are not fully utilized by the existing methods. In this paper, a two-branch convolutional neural network based on multi-spectral entropy rate superpixel segmentation (TBN-MERS) is designed for HSI classification. Firstly, entropy rate superpixel (ERS) segmentation is performed on the image of each spectral band in an HSI, respectively. The segmented images obtained are stacked band by band, called multi-spectral entropy rate superpixel segmentation image (MERSI), and then preprocessed to serve as the input of one branch in TBN-MERS. The preprocessed HSI is used as the input of the other branch in TBN-MERS. TBN-MERS extracts features from both the HSI and the MERSI and then utilizes the fused spectral–spatial features for the classification of HSIs. TBN-MERS makes full use of the joint spectral–spatial information of HSIs at the scale of superpixels and the scale of neighborhood. Therefore, it achieves excellent performance in the classification of HSIs. Experimental results on four datasets demonstrate that the proposed TBN-MERS can effectively extract features from HSIs and significantly outperforms some state-of-the-art methods with a few training samples.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3