MAS-Net: Multi-Attention Hybrid Network for Superpixel Segmentation

Author:

Yan Guanghui12,Wei Chenzhen12,Jia Xiaohong13,Li Yonghui12,Chang Wenwen12

Affiliation:

1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Key Laboratory of Media Convergence Technology and Communication, Lanzhou 730070, China

3. Key Laboratory of Big Data and Artificial Intelligence in Transportation, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China

Abstract

Superpixels, as essential mid-level image representations, have been widely used in computer vision due to their computational efficiency and redundant compression. Compared with traditional superpixel methods, superpixel algorithms based on deep learning frameworks demonstrate significant advantages in segmentation accuracy. However, existing deep learning-based superpixel algorithms suffer from a loss of details due to convolution and upsampling operations in their encoder–decoder structure, which weakens their semantic detection capabilities. To overcome these limitations, we propose a novel superpixel segmentation network based on a multi-attention hybrid network (MAS-Net). MAS-Net is still based on an efficient symmetric encoder–decoder architecture. First, utilizing residual structure based on a parameter-free attention module at the feature encoding stage enhanced the capture of fine-grained features. Second, adoption of a global semantic fusion self-attention module was used at the feature selection stage to reconstruct the feature map. Finally, fusing the channel with the spatial attention mechanism at the feature-decoding stage was undertaken to obtain superpixel segmentation results with enhanced boundary adherence. Experimental results on real-world image datasets demonstrated that the proposed method achieved competitive results in terms of visual quality and metrics, such as ASA and BR-BP, compared with the state-of-the-art approaches.

Funder

National Natural Science Foundation of China

Gansu Provincial Science and Technology Plan Project

Key Laboratory of Big Data and Artificial Intelligence in Transportation (Beijing Jiaotong University), Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3