Semantic-Aware Superpixel for Weakly Supervised Semantic Segmentation

Author:

Kim Sangtae,Park Daeyoung,Shim Byonghyo

Abstract

Weakly-supervised semantic segmentation aims to train a semantic segmentation network using weak labels. Among weak labels, image-level label has been the most popular choice due to its simplicity. However, since image-level labels lack accurate object region information, additional modules such as saliency detector have been exploited in weakly supervised semantic segmentation, which requires pixel-level label for training. In this paper, we explore a self-supervised vision transformer to mitigate the heavy efforts on generation of pixel-level annotations. By exploiting the features obtained from self-supervised vision transformer, our superpixel discovery method finds out the semantic-aware superpixels based on the feature similarity in an unsupervised manner. Once we obtain the superpixels, we train the semantic segmentation network using superpixel-guided seeded region growing method. Despite its simplicity, our approach achieves the competitive result with the state-of-the-arts on PASCAL VOC 2012 and MS-COCO 2014 semantic segmentation datasets for weakly supervised semantic segmentation. Our code is available at https://github.com/st17kim/semantic-aware-superpixel.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3