Mapping Land Cover Types for Highland Andean Ecosystems in Peru Using Google Earth Engine

Author:

Pizarro Samuel EdwinORCID,Pricope Narcisa GabrielaORCID,Vargas-Machuca Daniella,Huanca Olwer,Ñaupari Javier

Abstract

Highland Andean ecosystems sustain high levels of floral and faunal biodiversity in areas with diverse topography and provide varied ecosystem services, including the supply of water to cities and downstream agricultural valleys. Google (™) has developed a product specifically designed for mapping purposes (Earth Engine), which enables users to harness the computing power of a cloud-based solution in near-real time for land cover change mapping and monitoring. We explore the feasibility of using this platform for mapping land cover types in topographically complex terrain with highly mixed vegetation types (Nor Yauyos Cochas Landscape Reserve located in the central Andes of Peru) using classification machine learning (ML) algorithms in combination with different sets of remote sensing data. The algorithms were trained using 3601 sampling pixels of (a) normalized spectral bands between the visible and near infrared spectrum of the Landsat 8 OLI sensor for the 2018 period, (b) spectral indices of vegetation, soil, water, snow, burned areas and bare ground and (c) topographic-derived indices (elevation, slope and aspect). Six ML algorithms were tested, including CART, random forest, gradient tree boosting, minimum distance, naïve Bayes and support vector machine. The results reveal that ML algorithms produce accurate classifications when spectral bands are used in conjunction with topographic indices, resulting in better discrimination among classes with similar spectral signatures such as pajonal (tussock grass-dominated cover) and short grasses or rocky groups, and moraines, agricultural and forested areas. The model with the highest explanatory power was obtained from the combination of spectral bands and topographic indices using the random forest algorithm (Kappa = 0.81). Our study presents a first approach of its kind in topographically complex Cordilleran terrain and we show that GEE is particularly useful in large-scale land cover mapping and monitoring in mountainous ecosystems subject to rapid changes and conversions, with replicability and scalability to other areas with similar characteristics.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3