Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China

Author:

Li Shuai123,Guo Pu12,Sun Fei3,Zhu Jinlei12ORCID,Cao Xiaoming12,Dong Xue3,Lu Qi12

Affiliation:

1. Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China

2. Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China

3. Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannur 015200, China

Abstract

Drylands are characterized by unique ecosystem types, sparse vegetation, fragile environments, and vital ecosystem services. The accurate mapping of dryland ecosystems is essential for their protection and restoration, but previous approaches primarily relied on modifying land use data derived from remote sensing, lacking the direct utilization of latest remote sensing technologies and methods to map ecosystems, especially failing to effectively identify key ecosystems with sparse vegetation. This study attempts to integrate Google Earth Engine (GEE), random forest (RF) algorithm, multi-source remote sensing data (spectral, radar, terrain, texture), feature optimization, and image segmentation to develop a fine-scale mapping method for an ecologically critical area in northern China. The results showed the following: (1) Incorporating multi-source remote sensing data significantly improved the overall classification accuracy of dryland ecosystems, with radar features contributing the most, followed by terrain and texture features. (2) Optimizing the features set can enhance the classification accuracy, with overall accuracy reaching 91.34% and kappa coefficient 0.90. (3) User’s accuracies exceeded 90% for forest, cropland, and water, and were slightly lower for steppe and shrub-steppe but were still above 85%, demonstrating the efficacy of the GEE and RF algorithm to map sparse vegetation and other dryland ecosystems. Accurate dryland ecosystems mapping requires accounting for regional heterogeneity and optimizing sample data and feature selection based on field surveys to precisely depict ecosystem patterns in complex regions. This study precisely mapped dryland ecosystems in a typical dryland region, and provides baseline data for ecological protection and restoration policies in this region, as well as a methodological reference for ecosystem mapping in similar regions.

Funder

National Nonprofit Institute Research Grant of Chinese Academy of Forestry

Science & Technology Fundamental Resources Investigation Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3