A Computer Simulation of SARS-CoV-2 Mutation Spectra for Empirical Data Characterization and Analysis

Author:

Xiao Ming,Ma Fubo,Yu Jun,Xie Jianghang,Zhang Qiaozhen,Liu Peng,Yu FeiORCID,Jiang Yuming,Zhang LeORCID

Abstract

It is very important to compute the mutation spectra, and simulate the intra-host mutation processes by sequencing data, which is not only for the understanding of SARS-CoV-2 genetic mechanism, but also for epidemic prediction, vaccine, and drug design. However, the current intra-host mutation analysis algorithms are not only inaccurate, but also the simulation methods are unable to quickly and precisely predict new SARS-CoV-2 variants generated from the accumulation of mutations. Therefore, this study proposes a novel accurate strand-specific SARS-CoV-2 intra-host mutation spectra computation method, develops an efficient and fast SARS-CoV-2 intra-host mutation simulation method based on mutation spectra, and establishes an online analysis and visualization platform. Our main results include: (1) There is a significant variability in the SARS-CoV-2 intra-host mutation spectra across different lineages, with the major mutations from G- > A, G- > C, G- > U on the positive-sense strand and C- > U, C- > G, C- > A on the negative-sense strand; (2) our mutation simulation reveals the simulation sequence starts to deviate from the base content percentage of Alpha-CoV/Delta-CoV after approximately 620 mutation steps; (3) 2019-NCSS provides an easy-to-use and visualized online platform for SARS-Cov-2 online analysis and mutation simulation.

Funder

National Science and Technology Major Project

Sichuan Science and Technology Program

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Knowledge graph and Quantum Computing to Optimize the Comprehensive Mental Health Adaptive Test System;2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM);2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3