Intensification of Biophenols Extraction Yield from Olive Pomace Using Innovative Green Technologies

Author:

Belghith YosraORCID,Kallel ImenORCID,Rosa Maxence,Stathopoulos Panagiotis,Skaltsounis Leandros A.,Allouche NoureddineORCID,Chemat FaridORCID,Tomao ValérieORCID

Abstract

Olive pomace is the main by-product generated by the olive oil production process. Although toxic to the environment, olive pomace is an important source of natural antioxidants due to its high content of phenolic compounds. The aim of the current study is to maximize the extraction yields of the main phenolic compounds present in olive pomace using innovative green technologies. For this purpose, the present work is divided into two parts. The first part is based on a solubility study of targeted phenolic compounds in various ethanol/water ratios at two different temperatures (20 °C and 50 °C). A computational prediction using COSMO-RS software was applied for the calculation of eventual solubility, which was subsequently confirmed by practical experiments. The determination of the optimal extraction conditions of solvent ratio (EtOH/H2O) (60:40 v/v) and temperature (50 °C) led to the second part of the work, which concerns the intensification of extraction yields. Furthermore, various green extractions using innovative technologies, including accelerated solvent extraction (ASE), ultrasound with its both system (probe (UAE-P) and bath (UAE-B)), bead milling (BM) and microwave (MAE), were carried out and then compared to conventional maceration (CM). Results showed that ASE was the most effective method for extracting phenolic compounds from dried olive pomace powder (5.3 milligrams of tyrosol equivalent (TE) per gram of dried olive pomace powder (DOP)) compared to CM (3.8 mg TE/g DOP).

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3