A Fuzzy Model to Manage Water in Polymer Electrolyte Membrane Fuel Cells

Author:

Rubio Gómer AbelORCID,Agila Wilton Edixon

Abstract

In this paper, a fuzzy model is presented to determine in real-time the degree of dehydration or flooding of a proton exchange membrane of a fuel cell, to optimize its electrical response, and, consequently, its autonomous operation. By applying load, current, and flux variations in the dry, normal, and flooded states of the membrane, it was determined that the temporal evolution of the fuel cell voltage is characterized by changes in slope and by its voltage oscillations. The results were validated using electrochemical impedance spectroscopy and show slope changes from 0.435 to 0.52 and oscillations from 3.6 to 5.2 mV in the dry state, and slope changes from 0.2 to 0.3 and oscillations from 1 to 2 mV in the flooded state. The use of fuzzy logic is a novelty and constitutes a step towards the progressive automation of the supervision, perception, and intelligent control of fuel cells, allowing them to reduce their risks and increase their economic benefits.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial neural network based modelling and optimization of microalgae microbial fuel cell;International Journal of Hydrogen Energy;2024-01

2. Efficient Electro-Oxidation of 2-Propanol at Platinum- and Gold-Modified Palladium Nanocatalysts;Journal of Chemistry;2023-11-03

3. Qualitative Model for an Oxygen Therapy System based on Renewable Energy;2023 12th International Conference on Renewable Energy Research and Applications (ICRERA);2023-08-29

4. A Numerical Model for the Transport of Reactants in Proton Exchange Fuel Cells;2023 12th International Conference on Renewable Energy Research and Applications (ICRERA);2023-08-29

5. Distributed Intelligence in Autonomous PEM Fuel Cell Control;Energies;2023-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3