Efficient Electro-Oxidation of 2-Propanol at Platinum- and Gold-Modified Palladium Nanocatalysts

Author:

Ayman Kareem1,Asal Yaser M.1ORCID,Mohammad Ahmad M.2ORCID,Al-Akraa Islam M.1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, The British University in Egypt, Cairo 11837, Egypt

2. Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt

Abstract

This study aims at investigating the catalytic performance of Pd, Pd/Pt, and Pd/Au nanocatalysts toward the 2-propanol electro-oxidation reaction (2POR) in an alkaline medium. The catalyst components (Pd, Pt, and Au) were sequentially electrodeposited onto the glassy carbon (GC) electrode surface and further characterized using electrochemical (cyclic voltammetry (CV)) and materials (field-emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray (EDX)) characterization methods. The Pd/Au/GC catalyst showed the highest catalytic activity in terms of the highest oxidation current (0.386 mA) and the highest stability in terms of the highest obtained current after 1800 s of continuous electrolysis. This behaviour was attributed to the enhancement in the charge transfer kinetics where the Pd/Au/GC catalysts acquired the lowest charge transfer resistance (Rct, 1.85 kΩ) during the 2POR.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3