Reliability Assessment of Aircraft Commutators

Author:

Wawrzyński WojciechORCID,Zieja MariuszORCID,Tomaszewska JustynaORCID,Michalski Mariusz

Abstract

The article describes the method of predicting the reliability and durability of an aircraft commutator, which is a primary source of electric energy in helicopters. Tests were conducted for 10 starter-generators. From this research it follows that the technical condition of brushes and bearings has a significant impact on the reliability of starter-generators. The reliability of starter-generators was determined based on the method consisting of two stages that was adopted: the first stage involved determining the density function of changes in diagnostic parameter depending on the operating time, but the second stage included the assessment of the reliability of bearings of the starter-generator taking into account the real flight profile. The first stage of the adopted method consisted of defining the dynamic model of changing the length of the starter-generator’s brush, which became the probabilistic model. Subsequently, based on differential equations, Fokker–Planck partial differential equation was derived, which describes the process of increasing the brush wear in a probabilistic way. This method enables the prediction of the residual durability of the helicopter’s starter-generator due to the change in a diagnostic parameter which is the wear of brushes during starter-generator operation. The second stage of this method allows determining the durability of starter-generator’s bearings building upon the average helicopter’s flight profile. Owing to the difficulty in measuring the wear of bearings, the relation between the durability of bearings and the temperature of surroundings can be applied by replacing the flight altitude with temperature. The reliability of the helicopter’s starter-generator was determined based on the serial-type reliability structure.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3