Author:
Asma Mir,Othman W.A.M.,Muhammad Taseer
Abstract
The present article investigates Darcy–Forchheimer 3D nanoliquid flow because of a rotating disk with Arrhenius activation energy. Flow is created by rotating disk. Impacts of thermophoresis and Brownian dispersion are accounted for. Convective states of thermal and mass transport at surface of a rotating disk are imposed. The nonlinear systems have been deduced by transformation technique. Shooting method is employed to construct the numerical arrangement of subsequent problem. Plots are organized just to investigate how velocities, concentration, and temperature are influenced by distinct emerging flow variables. Surface drag coefficients and local Sherwood and Nusselt numbers are also plotted and discussed. Our results indicate that the temperature and concentration are enhanced for larger values of porosity parameter and Forchheimer number.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献