Abstract
In this work, a non-stationary technique based on the Power method for accelerating the parallel computation of the PageRank vector is proposed and its theoretical convergence analyzed. This iterative non-stationary model, which uses the eigenvector formulation of the PageRank problem, reduces the needed computations for obtaining the PageRank vector by eliminating synchronization points among processes, in such a way that, at each iteration of the Power method, the block of iterate vector assigned to each process can be locally updated more than once, before performing a global synchronization. The parallel implementation of several strategies combining this novel non-stationary approach and the extrapolation methods has been developed using hybrid MPI/OpenMP programming. The experiments have been carried out on a cluster made up of 12 nodes, each one equipped with two Intel Xeon hexacore processors. The behaviour of the proposed parallel algorithms has been studied with realistic datasets, highlighting their performance compared with other parallel techniques for solving the PageRank problem. Concretely, the experimental results show a time reduction of up to 58.4 % in relation to the parallel Power method, when a small number of local updates is performed before each global synchronization, outperforming both the two-stage algorithms and the extrapolation algorithms, more sharply as the number of processes increases.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference37 articles.
1. The PageRank Citation Ranking: Bringing Order to the Web;Page,1999
2. Google’s PageRank and Beyond: The Science of Search Engine Rankings;Langville,2006
3. The Algebraic Eigenvalue Problem;Wilkinson,1988
4. GeneRank: Using search engine technology for the analysis of microarray experiments
5. Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献