Abstract
Forty-four bicyclo ((aryl) methyl) benzamides, acting as glycine transporter type 1 (GlyT1) inhibitors, are developed using molecular modeling techniques. QSAR models generated by multiple linear and non-linear regressions affirm that the biological inhibitory activity against the schizophrenia disease is strongly and significantly correlated with physicochemical, geometrical and topological descriptors, in particular: Hydrogen bond donor, polarizability, surface tension, stretch and torsion energies and topological diameter. According to in silico ADMET properties, the most active ligands (L6, L9, L30, L31 and L37) are the molecules having the highest probability of penetrating the central nervous system (CNS), but the molecule 32 has the highest probability of being absorbed by the gastrointestinal tract. Molecular docking results indicate that Tyr124, Phe43, Phe325, Asp46, Phe319 and Val120 amino acids are the active sites of the dopamine transporter (DAT) membrane protein, in which the most active ligands can inhibit the glycine transporter type 1 (GlyT1). The results of molecular dynamics (MD) simulation revealed that all five inhibitors remained stable in the active sites of the DAT protein during 100 ns, demonstrating their promising role as candidate drugs for the treatment of schizophrenia.
Funder
Princess Nourah bint Abdulrahman University
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Synthesis, Characterization, DFT mechanistic study, Antibacterial Activity, Molecular modeling, and ADMET properties of novel chromone-isoxazole hybrids;Journal of Molecular Structure;2024-10
2. Synthesis, crystal structure, antioxidant activity and molecular docking studies of 2-(1-(3-methyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)ethyl)malononitrile;Journal of Molecular Structure;2024-09
3. A First-in-Class Pyrazole-isoxazole Enhanced Antifungal Activity of Voriconazole: Synergy Studies in an Azole-Resistant Candida albicans Strain, Computational Investigation and in Vivo Validation in a Galleria mellonella Fungal Infection Model;Journal of Medicinal Chemistry;2024-08-08
4. In silico insights into the design of novel NR2B-selective NMDA receptor antagonists: QSAR modeling, ADME-toxicity predictions, molecular docking, and molecular dynamics investigations;BMC Chemistry;2024-07-31
5. Identification of Potential Trypanosoma cruzi Trans-Sialidase Inhibitors by Computational Drug Repositioning Approaches;Scientia Pharmaceutica;2024-07-27