Hydrothermal Corrosion Behaviors of Constituent Materials of SiC/SiC Composites for LWR Applications

Author:

Suyama Shoko,Ukai Masaru,Akimoto Megumi,Nishimura Toshiki,Tajima Satoko

Abstract

The corrosion behaviors of SiC/SiC composite constituent materials in pure water at operating conditions, such as 300 °C and 8.5 MPa, were studied for potential application in accident-tolerant light water reactor (LWR) fuel cladding and core structures. Five kinds of SiC fibers, four kinds of SiC matrices, and three kinds of fiber/matrix interphase materials were examined in autoclaves. The potential constituent materials for future use in SiC/SiC composites were selected by considering corrosion rates and residual strength characteristics. The mass changes and the residual strength of each specimen were measured. SEM images of the surface layers were also inspected. The SiC fibers, regardless of their purity, crystallinity or stoichiometric ratio, decreased in strength due to the hydrothermal corrosion. For its part, the hydrothermal corrosion resistance of CVD-SiC, as a SiC matrix, was found to be affected by manufacturing conditions such as raw material gas type and synthesis temperature, as well as post-machining morphology. The CVD-carbon (CVD-C), as a fiber/matrix interphase material, showed good hydrothermal corrosion resistance. In order to protect the SiC fibers and the SiC matrices from hydrothermal corrosion, it would appear to be necessary to apply a dense CVD-C coating to both every fiber and the entire surface of the SiC matrices.

Publisher

MDPI AG

Subject

General Medicine

Reference26 articles.

1. Development of Continuous Fiber-Reinforced Reaction Sintered Silicon Carbide Matrix Composite for Gas Turbine Hot Parts Application;Kameda,2000

2. Thermal shock damage in a two-dimensional SiC/SiC composite reinforced with woven SiC fibers

3. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects

4. Development of accident tolerant SiC/SiC composite for nuclear reactor channel box;Suyama,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3