Assessing the Effects of Refuse-Derived Fuel (RDF) Incorporation on the Extrusion and Drying Behavior of Brick Mixtures

Author:

Makrygiannis Ioannis1ORCID,Tsetsekou Athena1,Papastratis Orestis1,Karalis Konstantinos2ORCID

Affiliation:

1. School of Mining Engineering and Metallurgy, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece

2. Institute of Geological Sciences, University of Bern, CH-3012 Bern, Switzerland

Abstract

This study explores the potential benefits of incorporating Recycled Demolition Waste (RDF) as an additive in ceramic mass for the brick industry, with a focus on applications such as thermoblocks. The research underscores the significance of sustainable waste management practices and environmental conservation by diverting waste from landfills. RDF, exhibiting combustion properties above 550 °C, emerges as a valuable candidate for enhancing clay-based materials, particularly in the brick production process where firing temperatures exceed 850 °C. Conducted in two phases, the research initially concentrated on RDF preparation, RDF integration with clay materials, and its influence on extrusion and drying phases. Employing innovative techniques involving brick and tile industry machinery coupled with sand incorporation yielded promising results. The grounding of RDF particles to less than 1 mm not only facilitated the mixing process but also ensured stable grinding temperatures within the hammer mill, reducing operational costs. During extrusion, challenges associated with unprocessed RDF material were addressed by utilizing ground RDF, leading to a more efficient and cost-effective process with enhanced plasticity and reduced water requirements. Practical implications for brick plant operations were identified, promoting resource and energy savings. Drying behavior analysis revealed the positive impact of RDF integration, showcasing reduced sensitivity, decreased drying linear shrinkage, and improved density properties. RDF’s role as an inert additive resulted in a 5% reduction in density, enhancing porosity and thermal insulation properties, particularly in thermoblock applications. In the brick industry, where durability, thermal performance, and cost-efficiency are paramount, this study emphasizes the potential benefits of incorporating RDF into clay-based materials. While further research is needed to address the firing procedure of RDF as a brick mass additive, the initial findings underscore the promise of this approach for sustainable and environmentally responsible brick production. This study contributes to the literature by shedding light on the advantages and challenges of integrating RDF into clay-based products, supporting sustainability and waste reduction in construction and manufacturing. The findings provide valuable insights into the performance and feasibility of these mixtures, offering crucial information for industries striving to adopt eco-conscious production methods. This article not only outlines the applied methodology and experimental setup but also presents results related to the behavior of RDF-inclusive clay block mixtures in the production environment. Anticipated to exert considerable influence on future practices and policies, this research contributes to the growing body of knowledge concerning eco-friendly and sustainable manufacturing processes.

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3