Study of the Mechanisms of Polymorphic Transformations in Zirconium Dioxide upon Doping with Magnesium Oxide, as Well as Establishing the Relationship between Structural Changes and Strength Properties

Author:

Kurakhmedov Alisher E.12,Morzabayev Aidar K.2,Tleubay Islam2,Berguzinov Askhat3,Kozlovskiy Artem L.24ORCID

Affiliation:

1. Laboratory of Solid State Physics, The Institute of Nuclear Physics, Almaty 050032, Kazakhstan

2. Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan

3. Department of Heat Power Engineering, Toraighyrov University, Pavlodar 140000, Kazakhstan

4. Department of “Chemical Processes and Industrial Ecology”, Satbayev University, Almaty 050013, Kazakhstan

Abstract

The aim of this work is to study the mechanisms of polymorphic transformations in ZrO2 ceramics doped with MgO with different concentrations during thermal isochronous annealing, as well as the effect of the phase composition of ceramics on the change in strength properties and resistance to mechanical stress. Solving the problem of polymorphic transformations in zirconium dioxide by doping them with MgO will increase the resistance of ceramics to external influences, as well as increase the mechanical strength of ceramics. According to the data of X-ray phase analysis, it was found that the addition of the MgO dopant to the composition of ceramics at the chosen thermal annealing temperature leads to the initialization of polymorphic transformation processes, while changing the dopant concentration leads to significant differences in the types of polymorphic transformations. In the case of an undoped ZrO2 ceramic sample, thermal annealing at a temperature of 1500 °C leads to structural ordering due to the partial removal of deformation distortions of the crystal lattice caused by mechanochemical grinding. During the study of the effect of MgO doping and polymorphic transformations in ZrO2 ceramics on the strength properties, it was found that the main hardening effect is due to a change in the dislocation density during the formation of a ZrO2/MgO type structure. At the same time, polymorphic transformations of the m—ZrO2 → t—ZrO2 type have a greater effect on hardening at low dopant concentrations than t—ZrO2 → c—ZrO2 type transformations.

Funder

Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Materials Science (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3