High-temperature transport properties of BaSn1−xScxO3−δ ceramic materials as promising electrolytes for protonic ceramic fuel cells

Author:

Zvonareva Inna A.,Mineev Alexey M.,Tarasova Natalia A.,Fu Xian-Zhu,Medvedev Dmitry A.

Abstract

AbstractProtonic ceramic fuel cells (PCFCs) offer a convenient means for electrochemical conversion of chemical energy into electricity at intermediate temperatures with very high efficiency. Although BaCeO3- and BaZrO3-based complex oxides have been positioned as the most promising PCFC electrolytes, the design of new protonic conductors with improved properties is of paramount importance. Within the present work, we studied transport properties of scandium-doped barium stannate (Sc-doped BaSnO3). Our analysis included the fabrication of porous and dense BaSn1−xScxO3−δ ceramic materials (0 ⩽ x ⩽ 0.37), as well as a comprehensive analysis of their total, ionic, and electronic conductivities across all the experimental conditions realized under the PCFC operation: both air and hydrogen atmospheres with various water vapor partial pressures (p(H2O)), and a temperature range of 500–900 °C. This work reports on electrolyte domain boundaries of the undoped and doped BaSnO3 for the first time, revealing that pure BaSnO3 exhibits mixed ionic-electronic conduction behavior under both oxidizing and reducing conditions, while the Sc-doping results in the gradual improvement of ionic (including protonic) conductivity, extending the electrolyte domain boundaries towards reduced atmospheres. This latter property makes the heavily-doped BaSnO3 representatives attractive for PCFC applications.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3