Abstract
Powders of β-tricalcium phosphate (β-TCP, Ca3PO4) doped with manganese (Mn2+) are comprehensively analyzed with electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) techniques. The modeling of the spectra permitted to calculate the values of zero-field splitting (B20 = −904 MHz; B40 = −1.41 MHz and B43 = 195.2 MHz) and explain the origin of the low-field hyperfine structures as the allowed spin transitions of fine structure. Three structurally inequivalent positions for Mn2+ in the β-TCP crystal lattice are identified and their g-factors and hyperfine constants are quantified. The obtained results can serve as fundamental background to the study of structurally disordered matrices with high spin (S ≥ 1) impurities which are important for catalytic systems.
Subject
Materials Science (miscellaneous),Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献