In-Situ Heavy Oil Aquathermolysis in the Presence of Nanodispersed Catalysts Based on Transition Metals

Author:

Aliev Firdavs A.ORCID,Mukhamatdinov Irek I.ORCID,Sitnov Sergey A.,Ziganshina Mayya R.,Onishchenko Yaroslav V.,Sharifullin Andrey V.,Vakhin Alexey V.

Abstract

The aquathermolysis process is widely considered to be one of the most promising approaches of in-situ upgrading of heavy oil. It is well known that introduction of metal ions speeds up the aquathermolysis reactions. There are several types of catalysts such as dispersed (heterogeneous), water-soluble and oil soluble catalysts, among which oil-soluble catalysts are attracting considerable interest in terms of efficiency and industrial scale implementation. However, the rock minerals of reservoir rocks behave like catalysts; their influence is small in contrast to the introduced metal ions. It is believed that catalytic aquathermolysis process initiates with the destruction of C-S bonds, which are very heat-sensitive and behave like a trigger for the following reactions such as ring opening, hydrogenation, reforming, water–gas shift and desulfurization reactions. Hence, the asphaltenes are hydrocracked and the viscosity of heavy oil is reduced significantly. Application of different hydrogen donors in combination with catalysts (catalytic complexes) provides a synergetic effect on viscosity reduction. The use of catalytic complexes in pilot and field tests showed the heavy oil viscosity reduction, increase in the content of light hydrocarbons and decrease in heavy fractions, as well as sulfur content. Hence, the catalytic aquathermolysis process as a distinct process can be applied as a successful method to enhance oil recovery. The objective of this study is to review all previously published lab scale and pilot experimental data, various reaction schemes and field observations on the in-situ catalytic aquathermolysis process.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3