Large Eddy Simulation of Flow over Wavy Cylinders with Different Twisted Angles at a Subcritical Reynolds Number

Author:

Guo ChunyuORCID,Guo Hang,Hu Jian,Song Kewei,Zhang Weipeng,Wang Wei

Abstract

The deformation of the cylinder has been proved to greatly reduce the fluctuation of lift and the vortex-induced vibration. In this article, a new form of deformation mode for the smooth cylinder is proposed in order to reduce the vortex-induced vibrations, which can be applied to marine risers and submarine pipelines to ensure the working performance and safety of offshore platforms. Large eddy simulation (LES) is adopted to simulate the turbulent flow over wavy cylinders with three different twisted angles at a subcritical Reynolds number Re = 28,712. Comparing with the results of smooth cylinder, the maximum drag and lift reduction of wavy cylinder A3 with α = 40° can reach 17% and 84%, respectively, and the corresponding vortex formation length increases significantly, while the turbulence intensity decreases relatively. Meanwhile, the circumferential minimum pressure coefficient is greater than that of the smooth cylinder, which also provides a greater drag reduction for the cylinder. The surface separation line, turbulent kinetic energy distribution, and wake vortex structure indicate that the elongation of separated shear layer and wake shedding position is larger than that of the smooth cylinder, and the vorticity value in the near wake region decreases. A periodic vortex structure is generated along the spanwise direction, and a weaker and more stable Karman vortex street is reformed at a further downstream position, which ultimately leads to the reduction of drag and fluctuating lift of the wavy cylinder.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3