Aerodynamic Effects of High-Speed Train Positions During Tunnel Exit Under Crosswind Conditions Using Computational Fluid Dynamics

Author:

Rajendran S,Ishak Izuan Amin,Arafat M,Mohammad Ahmad Faiz,Salleh Zuliazura Mohd,Samiran Nor Afzanizam,Ja'at M N M,Sulaiman Syabillah

Abstract

Strong crosswinds can cause catastrophic accidents like overturning and derailment in extreme circumstances, therefore the train's capacity to tolerate their impacts is crucial. Despite the significance of this issue, there exists a notable research gap in understanding the specific effects of various positions of a high-speed train within a tunnel on its aerodynamic loads and flow structure under different crosswind conditions. To address this gap, numerical simulations were performed using computational fluid dynamics. The crosswind angles (Ψ) were 15°, 30°, 45°, and 60° and the number of coaches exiting the tunnel was one to three coaches, respectively. The incompressible flow around the train was simulated using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations in conjunction with the k-epsilon (k-ε) turbulence model. The Reynolds number employed in the simulation was 1.3 x 106, calculated based on the height of the train and the freestream velocity. With regard to aerodynamic performance due to the crosswind, force coefficients such as drag, side, and lift and moment coefficients of rolling, pitching, and yawing were measured. The higher crosswind angles including ψ = 45° and ψ = 60° cases produced the worse results of aerodynamic load coefficients compared to the lower crosswind angles of ψ = 15° and ψ = 30°. For instance, the highest side force coefficient (Cs) was recorded at a crosswind angle of ψ = 45°, with a value of 23.6. Meanwhile, the flow structure revealed that the leading coach of the train experienced intricate flow patterns during crosswinds, characterized by vortices and flow separation. These findings indicate that aerodynamic instabilities can potentially affect the overall performance of the train. Additionally, this increases the risk of derailment or overturning to be high, particularly when the majority of coaches are exiting the tunnel under strong crosswind conditions.

Publisher

Universiti Malaysia Pahang Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3