Various Generative Adversarial Networks Model for Synthetic Prohibitory Sign Image Generation

Author:

Dewi ChristineORCID,Chen Rung-ChingORCID,Liu Yan-Ting,Yu HuiORCID

Abstract

A synthetic image is a critical issue for computer vision. Traffic sign images synthesized from standard models are commonly used to build computer recognition algorithms for acquiring more knowledge on various and low-cost research issues. Convolutional Neural Network (CNN) achieves excellent detection and recognition of traffic signs with sufficient annotated training data. The consistency of the entire vision system is dependent on neural networks. However, locating traffic sign datasets from most countries in the world is complicated. This work uses various generative adversarial networks (GAN) models to construct intricate images, such as Least Squares Generative Adversarial Networks (LSGAN), Deep Convolutional Generative Adversarial Networks (DCGAN), and Wasserstein Generative Adversarial Networks (WGAN). This paper also discusses, in particular, the quality of the images produced by various GANs with different parameters. For processing, we use a picture with a specific number and scale. The Structural Similarity Index (SSIM) and Mean Squared Error (MSE) will be used to measure image consistency. Between the generated image and the corresponding real image, the SSIM values will be compared. As a result, the images display a strong similarity to the real image when using more training images. LSGAN outperformed other GAN models in the experiment with maximum SSIM values achieved using 200 images as inputs, 2000 epochs, and size 32 × 32.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3