Abstract
AbstractFeature selection becomes prominent, especially in the data sets with many variables and features. It will eliminate unimportant variables and improve the accuracy as well as the performance of classification. Random Forest has emerged as a quite useful algorithm that can handle the feature selection issue even with a higher number of variables. In this paper, we use three popular datasets with a higher number of variables (Bank Marketing, Car Evaluation Database, Human Activity Recognition Using Smartphones) to conduct the experiment. There are four main reasons why feature selection is essential. First, to simplify the model by reducing the number of parameters, next to decrease the training time, to reduce overfilling by enhancing generalization, and to avoid the curse of dimensionality. Besides, we evaluate and compare each accuracy and performance of the classification model, such as Random Forest (RF), Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Linear Discriminant Analysis (LDA). The highest accuracy of the model is the best classifier. Practically, this paper adopts Random Forest to select the important feature in classification. Our experiments clearly show the comparative study of the RF algorithm from different perspectives. Furthermore, we compare the result of the dataset with and without essential features selection by RF methods varImp(), Boruta, and Recursive Feature Elimination (RFE) to get the best percentage accuracy and kappa. Experimental results demonstrate that Random Forest achieves a better performance in all experiment groups.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems
Cited by
446 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献