Abstract
This work simulates electricity production in a Solid Oxide Fuel Cell (SOFC)-based power plant, fed by biogas of various compositions. Steam reforming of the gas feed stream is used to produce the required supply for the SOFC. Given the constraints of the feed stream compositions, resulting from the origin of biogas, i.e., by the biomass from which the biogas has been produced as well as by the operating conditions selected for its production, the overall plant performance is modelled in terms of energy and exergy. The model provides results on the efficiency, power output and thermal behavior of the system, thus presenting the potential to offer great advantages in generating electricity from biogas and reducing the environmental impact. This research study presents the efficiency of such a system in terms of energy and exergy, by considering several values of the operational parameters (extensions of reactions that take place in the apparatus, temperatures, feed stream compositions, etc.). It is found that moving towards a methane richer fuel, the energy and exergy efficiency can remain almost constant at high levels (around 70%), while in absolute value the electric energy can increase up to 35% according to the system’s needs. Therefore, under this prospect, the present research study reveals the usefulness of low content methane fuels, which through the optimization process can succeed identical energy management compared to high content methane fuels.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献