Thermodynamic Analysis of the Effect of Green Hydrogen Addition to a Fuel Mixture on the Steam Methane Reforming Process

Author:

Kaczmarczyk RobertORCID

Abstract

Steam methane (CH4–H2O) reforming in the presence of a catalyst, usually nickel, is the most common technology for generating synthesis gas as a feedstock in chemical synthesis and a source of pure H2 and CO. What is essential from the perspective of further gas use is the parameter describing a ratio of equilibrium concentration of hydrogen to carbon monoxide (H/C=xH2/xCO). The parameter is determined by operating temperature and the initial ratio of steam concentration to methane SC=xH2O0/xCH40. In this paper, the author presents a thermodynamic analysis of the effect of green hydrogen addition to a fuel mixture on the steam methane reforming process of gaseous phase (CH4/H2)–H2O. The thermodynamic analysis of conversion of hydrogen-enriched methane (CH4/H2)–H2O has been performed using parametric equation formalism, allowing for determining the equilibrium composition of the process in progress. A thermodynamic condition of carbon precipitation in methane reforming (CH4/H2) with the gaseous phase of H2O has been interpreted. The ranges of substrate concentrations creating carbon deposition for temperature T = 1000 K have been determined, based on the technologies used. The results obtained can serve as a model basis for describing the properties of steam reforming of methane and hydrogen mixture (CH4/H2)–H2O.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference54 articles.

1. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications

2. Systems Analyses Power to Gas: A Technology Review;Grond,2013

3. Admissible Hydrogen Concentrations in Natural Gas Systems;Altfeld,2013

4. Entwicklung von Modularen Konzepten zur Erzeugung, Speicherung und Einspeisung von Wasserstoff und Methan ins Erdgasnetz;Müller-Syring,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3