Abstract
A novel method named residual-variational mode decomposition (RVMD) is proposed in this study to extract bearing fault features accurately. RVMD can determine the number of modes and the balance parameter adaptively, and it has two stages. In the first stage, the signal is decomposed into a series of modes until the correlation coefficient between the raw signal and the decomposition results reaches the threshold. A redefined kurtosis, which can resist the interferences from aperiodic impulse efficiency, is applied to rebuild the ensemble kurtosis index. The mode that has the largest rebuild-ensemble kurtosis, and its neighbors, are kept. By putting the residual signal into the second stage, an iteration process is applied to determine the optimal parameters for variational mode decomposition (VMD). VMD is re-run with the optimal parameters, and the sub-mode filtered with the larger rebuild-ensemble kurtosis is examined by the envelope analysis technology to observe the fault feature. The effectiveness of RVMD is verified by the simulation signal and three experiment signals. Its superiority is shown by comparing it with some existing methods.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献