Impulse Signal Detection for Bearing Fault Diagnosis via Residual-Variational Mode Decomposition

Author:

Liu Yuhu,Chai Yi,Liu Bowen,Wang YimingORCID

Abstract

A novel method named residual-variational mode decomposition (RVMD) is proposed in this study to extract bearing fault features accurately. RVMD can determine the number of modes and the balance parameter adaptively, and it has two stages. In the first stage, the signal is decomposed into a series of modes until the correlation coefficient between the raw signal and the decomposition results reaches the threshold. A redefined kurtosis, which can resist the interferences from aperiodic impulse efficiency, is applied to rebuild the ensemble kurtosis index. The mode that has the largest rebuild-ensemble kurtosis, and its neighbors, are kept. By putting the residual signal into the second stage, an iteration process is applied to determine the optimal parameters for variational mode decomposition (VMD). VMD is re-run with the optimal parameters, and the sub-mode filtered with the larger rebuild-ensemble kurtosis is examined by the envelope analysis technology to observe the fault feature. The effectiveness of RVMD is verified by the simulation signal and three experiment signals. Its superiority is shown by comparing it with some existing methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3