A Feature Extraction Method of Wheelset-Bearing Fault Based on Wavelet Sparse Representation with Adaptive Local Iterative Filtering

Author:

Xing Zhan1,Lin Jianhui1ORCID,Huang Yan1,Yi Cai1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Abstract

The feature extraction of wheelset-bearing fault is important for the safety service of high-speed train. In recent years, sparse representation is gradually applied to the fault diagnosis of wheelset-bearing. However, it is difficult for traditional sparse representation to extract fault features ideally when some strong interference components are imposed on the signal. Therefore, this paper proposes a novel feature extraction method of wheelset-bearing fault based on the wavelet sparse representation with adaptive local iterative filtering. In this method, the adaptive local iterative filtering reduces the impact of interference components effectively and contributes to the extraction of sparse impulses. The wavelet sparse representation, which adopts L1-regularized optimization for a globally optimal solution in sparse coding, extracts intrinsic features of fault in the wavelet domain. To validate the effectiveness of this proposed method, both simulated signals and experimental signals are analyzed. The results show that the fault features of wheelset-bearing are sufficiently extracted by the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3